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We consider quantum effective actions for arbitrary models possessing an infinite-dimensional group G of Noether symmetries. 
The relevant Ward identities yield functional differential equations for the effective action whose exact solution is found to be 
given by the geometric action on a coadjoint orbit of the (central extended ) Noether group G. As a particular application we show 
that the effective action of the light-cone quantized toroidal membrane is explicitly given by the geometric co-orbit action of the 
group of area-preserving diffeomorphisms on torus. 

1. Introduction 

Classical- and quantum-mechanica l  systems with 
inf in i te-d imensional  groups of  Noether  symmetr ies  
are at t ract ing broad  interest  since a couple o f  years. 
There emerged so far three pr incipal  classes o f  such 
systems: 

( i )  Comple te ly  integrable models  in D =  2 space-  
t ime d imensions  [ 1 ] ( the relevant  symmetr ies  form 
an inf in i te-d imensional  abel ian group) ;  

( i i )  D = 2  ( super - )conformal  field theories [2] 
with their  fundamenta l  appl ica t ions  in ( super )s t r ing  
theory [ 3 ] ( K a c - M o o d y  and Virasoro symmetr ies  
and their  supersymmetr ic  extensions) ;  

( i i i )  theory of  ( super )  p-branes  [4]  ( the relevant  
symmetr ies  being groups o f symplec t i c  (volume-pre-  
serving) d i f feomorphisms ). 

In ( i ) ,  the presence o f  the inf in i te -d imensional  
abel ian symmet ry  is exploi ted in the powerful  classi- 
cal and quan tum inverse scattering method  [ 1 ] lead- 
ing to exact solutions. In ( i i )  and  ( i i i )  the relevant  

symmetr ies  are o f  different nature  and non-abelian,  
but  still they de termine  the whole dynamics  o f  the 
systems. One o f  the most  efficient ways to incorpo-  
rate their  inf ini te-dimensional  symmetry  structure is 
the method  of  group coadjoint  orbits  ~t 

In the present  letter, start ing from the general sym- 
plectic manifo ld ' s  formal ism (generalizing the group 
coadjoint  orbit  formalism; see section 2) we discuss 
arbi trary models (in D >/2 d imensions)  possessing an 
inf in i te-dimensional  group G of  Noether  symmetr ies  
and  consider  coupling of  the Noether  currents to ex- 
ternal  "sources".  We write down the Ward  ident i t ies  
for the corresponding quan tum effective actions 
which turn out to exhibit  the following remarkable  
proper ty  (section 3 ). No mat te r  what  is the specific 
act ion o f  the ini t ial  classical model,  its quan tum ef- 
fective act ion is always given by the geometr ic  act ion 
on a generic coadjoint  orbi t  of  the (central  extension 
o f  the)  Noether  symmetry  group G. Given  therefore 
the model  with Noether  symmetry  algebra which ad- 
mits  central extension, the geometr ic  act ion ap- 
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~1 Some basic references for the recent revival of the coadjoint 
orbit method [ 5 ] in the context of its extension to infinite- 
dimensional groups and applications to D= 2 conformal field 
theories are [6-9]. 

0370-2693/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V. ( North-Holland ) 3 59 



Volume 255, number 3 PHYSICS LETTERS B 14 February 1991 

proach [ 10-12] can then be employed to find its 
unique quantum effective action. 

The last, fourth section is devoted to specific ex- 
amples of this general result. 

2. General symplectic actions 

Let us consider an infinite-dimensional symplectic 
manifold (phase space) J /s  parametrized by local co- 
ordinates S ~. The index i is a short-hand notation for 

i=  ( (x , ,  ..., xp); A ) ,  (1) 

including in general both continuous parameters (Xl, 
.... xp) (e.g., in the case ofp-brane models) as well as 
discrete indices A (as in the case of Kac-Moody 
groups). The fundamental Poisson brackets (PB) are 
of the form 

{S ~, SJ}pB = o9 ~J(S), ( 2 ) 
. .  0 . .  0 , .  0 . .  

ogu( S)  =og'J+ og ~ Sk + ½ og'~lSkSt + .... (3) 

We make in the following an assumption that the co- 
ordinate system {W} of Jgs is such that the PB matrix 
og~J(S) is invertible on the whole manifold ~'s- In what 
follows, we shall keep for simplicity the series (3) only 
up to second order in S i ~2. The Jacobi identities for 
the Poisson bracket (2) read 

c y c l i c  

V' ogutS'~ " o ~ ( S ) = O  (4) 
i , j ,k  O~,J 

from which one easily deduces a number of  funda- 
mental identities for the coefficients in (3). 

Let us also introduce a one-form Y~= Y~(S) on ~/gs 
as a (non-local and non-linear) functional of S ~ de- 
termined from the following basic equation: 

dSi + ogi:( S)  Yj=O , (5) 

where d is the exterior derivative on ~//s. The integra- 
bility condition for ( 5 ) together with (4) imply that 
Y~ must satisfy the generalized Maurer-Cartan 
equation: 

~: ~t~is includes most of the interesting models: toni(S)= 
6/J= const, describes ordinary field theories with S ~ denoting 
both the fields and their canonical momenta; toO(S) linear in 
S ~ describes group coadjoint orbits and to°(S) bilinear in S ~ 
describes W:like models. 

dY~+~ g-~5o9 (S) Y k ^ Y t = O .  (6) 

Before proceeding further it is useful to comment, 
at this point, on the explicit nature of the objects in- 
troduced above in the important particular case when 
the symplectic manifold d/s is (locally) isomorphic 
to a coadjoint orbit (~tBo.c) of the (central-extended) 
Lie group CJ, with a Lie algebra ~ =  fg+~, passing 
through a generic point (Bo, c) in the dual space 
~ '  = f#* + ~. In this case the PBs (2) acquire the form 
(i.e. ° ~ t = 0 )  

. .  0 . .  k {S', Sj} =~':+O9~S . (7) 

Then eq. (4) reduces to the usual Jacobi identities 
O i " • (or the structure constants o9 ~ and the condmon that 

U i , o9 v is a (non-trivial) C~-cocycle (defining the central 
extension from f# to ~).  

Let us choose a basis ( T i,/~) in ~: 
0 . .  0 . . ~  

[T ~, TJ]=-o9 '~Tk-o9"E,  [Ti, E ] = 0 ,  (8) 

with the associated dual basis (T,*,/~*) in ~* (i.e. 
( T ' 7 [ T J ) = ~  where ( I ) is the natural bilinear 
form on f#* × f~). Let us also introduce the following 
functions on the group G (the non-centrally ex- 
tended part of G)  corresponding to the algebra if: (9: 

X ( g ) = S i T * e f ¢  *, Y (g )=Y ,  Ti~C~. (9) 

Then, the coadjoint action of Q on ~* becomes (see 
refs. [5,12]) 

Ad* (g) (Bo, c) = (Bo +S(g) ,  c ) ,  (10) 

and the coadjoint orbit is parametrized in terms of 
the group coordinates g as 

C(,o,~) = {(Bo +X(g) ,  c); VgeG}. ( 11 ) 

Eqs. (5) and (6) can be rewritten as 

dX(g) =ad*(Y(g)  )X(g) + a ( Y ( g )  ) ,  (12) 

dY(g) = 1 [ y(g) ,  /x Y(g) ] ,  (13) 

where ad* ( ) is the Lie-algebra f# coadjoint action on 
~*: 

(ad*(~)B[ r/) = - ( B l a d ( ~ ) q )  = - (BI [~, r/] ) ,  

v~,n~ ,  (14) 

and tr(~) is the infinitesimal part of X(g) given ex- 
plicitly by 
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Z ( g = e x p  ~) = a ( ~ )  + O ( ~  2) , 
- -  . 0  

0"(~) = Tiogij~j. (15) 

In terms of the ordinary coadjoint actions Ad* (g) and 
ad*(~) of  the non-central-extended group G and al- 
gebra f#, Z(g) in (10) and e(~) in (15) are ex- 
pressed as follows [ 12 ]: 

Z(g) = Ad* (g) Bo - Bo + c2S(g) , 

a(~) =ad*(¢)Bo +c2s (~) ,  (16) 

S ( g = e x p  ~) =s (¢)  + O ( ~  z) , (17) 

where S(g) is the "integrated anomaly", i.e. the 
"anomaly" forfinite group transformations ge G due 
to the presence of the central extension in ~ (8). The 
coefficient 2 in (16) is a numerical normalization 
factor for each specific model. 

In terms of Z(g)  the fundamental PBs (2) on the 
co-orbit ~¢~0,~) can be rewritten in the form [ 11,12 ] 

{ (Z(g)  I~>, (Z(g) It/> }pa 

=(ad*(~)Z(g)+a(~)lr l ) ,  q~,~le~. (18) 

Going back to the general non-linear case (2) and 
using (5) one can show that the general form of the 
classical mechanics action on the phase space ~#s cor- 
responding to the PBs (2) is 

f f / [S]=  W [ S ] -  f d tH[S] ,  (19) 
d 

w[s]=- f {SeY, 

[ (co 'J- ½~o '~lsks t) Yi ^ Yj]}, (20) _½d_ l o . o 

where H is a hamiltonian on J[s. In (19) and (20) 
the integral is over an one-dimensional curve on ~ '  
with parameter t. Accordingly, the exterior deriva- 
tive along the curve becomes d = d t  0,, and the pro- 
jection of the one-form ]1,. is Y~=dtyi(t). Note the 
presence of the multi-valued term in the "kinetic" part 
W[S] (20). 

In what follows we shall restrict our attention to 
the purely "kinetic" action (20) (i.e. the case 
H[S] = 0), since this is precisely the form of most in- 
teresting geometric actions [for instance, the actions 
on group coadjoint orbits Jgs= (5(So,c), see eq. (29) ]. 

Let us consider the following transition on ~/s: 

8,S~= -co~J(S)qj, (21) 

implying that Y~ transform as a "gauge" potential: 

~i kt 8.Yi=d~/,+ ~¢o (S)Ykq~ 
O k .  0 . .  . 

=dth +to i'Ykql+O~lSJYkqz . (22) 

One can easily show, using (22) and (5), that (21) 
is a Noether symmetry of the action W[S] (20), 

" ~ - -  J Ot~]i----~OtSl . . . .  h e l l  = 0  , (23) 8, W[ S] dt S i i 

with j r (S )  = S ~ being the corresponding Noether cur- 
rent (actually, a charge). 

Functional derivative of W[S] is compactly given 
by (for arbitrary variations 8S0: 

8W[S] = - J 8S ~ Y~, 

8 
i.e. - -  W[S]=-y~( t ) .  (24) 

8Si(t) 

Therefore, accounting for ( 5 ), the action W[S] (20) 
satisfies the following off-shell functional differential 
equation: 

8 
O,S'(t)-og'J(S) ~ W[S] = 0 .  (25) 

Similarly, the Legendre transform F[y] of W[S], 

F[y] = W[S] + J dt Siy, 

0 .. 0 .. 
=-½ d-l[(oJU-½to~tSkSt)r~^Yj], (26) 

8 W [ S ] = - y ~  8 = S  ~ (27) ~s--7~ g-~y r[y] , 

satisfies the functional differential equation 

8 

Let us stress that in all equations above, involving 
both S t and Y~ (or y~), it is understood that they are 
functionals of  each other determined from the basic 
off-shell relation (5). 

In the important particular case (7), when the 
phase space ~Bo,c) is a G coadjoint orbit (5~no,c), for- 
mulas (20), ( 24 ) - (28 )  can be rewritten as follows 
[10-12]: 
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W [ S ] -  W o [ g ] = -  J [<S(g) lY(g)> 

- ½ d - ' (  <a(Y(g) ) lY(g)  > ) ] , (29) 

8 
827(g) W~[g] = - Y t ( g ) ,  

8 
8yt(g_t) W c [ g ] = - - r ( g - ~ ) ,  (30) 

F~[y] = W¢[g] + j <~,(g) lY(g) > 

= - W o [ g  - t ]  , (31) 

O, ~ - ~ F ~ [ y l  - a d * ( y ( t ) )  ~ - ~ F ~ [ y l  

- t r (y(  t) )=O . (32) 

[As in the nonlinear case the one-form Y(g) be- 
comes Y(g)=dty t (g)  along the phase-space curve 
of integration in the action (29) ]. 

The last equality in eq. (31 ) is a consequence of 
the fundamental group composition law [ 1 l, 12 ]: 

Wo[g~g2] = Wo[g~] + WG [g2] 

+ J <S(gz) lY(gi - l ) )  (33) 

generalizing the famous Polyakov-Wiegmann com- 
position laws [ 13 ] to the case of geometric actions 
for arbitrary infinite-dimensional groups ~ (29). 

3. Effective actions and Ward identities 

Let us consider the arbitrary classical mechanics 
model on an infinite-dimensional phase-space ~/¢, 
parametrized by coordinates ~a (the fundamental 
Poisson brackets {t~a, ~ b } P B ~ - O a b ( C I  ) )  need not be 
linear or bilinear with respect to ~a; as in sect. 2 the 
index a labels in general both continuous and dis- 
crete indices). Let the classical action Wo [ @ ] posses 
infinite-dimensional Noether symmetries: 

~rl (I) a --~ x i ( cI) ) l~ i , 

8, Wo[~] = - ~ J~(~) 0tr/,. (34) 

The corresponding Noether conserved currents Y (~)  
span the PB algebra of the form 

{j,(¢~), jJ(c~)}p~ = ojO(j(~) ) ,  (35) 

t o ' J ( J ( ~ ) ) - ~  o o ,  -- v + ~ J k ( ~ ) + ½ t O ~ J k ( ~ ) J l ( ~ )  

+.. . ,  (36) 

where o~°(J(~) ) has exactly the same properties as 
to°(S) in (4). Let us recall that J i ( ~ )  are the PB 
generators of the relevant Noether symmetries: 

8 .F(q0 = {q,J'(q~), F(q~) }pB 

= 8F(q~) X~(q0tb (37) 
8q~. 

for any "observable" F(q~). In particular, the trans- 
formation of the Noether currents themselves read 

8,J' ( @ ) = - to'J( J( @ ) )qj . (38) 

Let us now introduce coupling of the conserved 
J~(@) to an external "source" Yi: 

Wo[~] + ~ dtJ~(dP)y~. (39) 

The action (39) is gauge invariant under the Noether 
transformations (34) provided yi is simultaneously 
transformed as a "gauge potential": 

5,yi = Otqi + -~i o)kt ( J ( ~ ) ) Ykrlt • (40) 

In the ordinary Lie-algebra case [ 0090 = 0 and O ~) = 0 
in (36) ] this is exactly a gauge invariance under the 
infinite-dimensional group G generated by the 
Noether currents Y ( ~ ) .  

Let us consider the quantum effective action: 

exp(iff[y] )=  f ~ exp[i(Wo [ qb] 

+fdtY(qOy,)]. (41) 

Performing in (41) change of variables ~ q ~ +  
8 . q ~ - ~ a + X ~ ( ~ ) q i  and using (34) and (38), we 
get the Ward identity (WI): 

Ot 6~i(t) +YJ(t)w° 8 - ~  

o 82_~ 
-½iyj(t)co~zo .~--~-~ . . .  + R ~ ( y ) = 0 .  (42) 

O y k ( t ) o y t ( t )  
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The last term R~(y) in (42) is anomalous and comes 
from the non-invariance (in general) of the measure 
in (41) under the above change of variables. 

In the non-linear (non Lie-algebra) case of the PB 
algebra (35) the WI (42) does not form a closed sys- 
tem of functional differential equations for P. In- 
deed, the second order functional derivative term in 
(42) corresponds to an insertion of the composite 
field: 

0 . .  

A ~J = co ~,k2J~ ( ~ )  J~  (q~), (43) 

with coinciding arguments of the constituents ~3. 
Therefore, upon renormalization the second order 
functional derivative term in (42) describes an in- 
sertion of a new composite field which cannot be ex- 
pressed in terms of the original effective action/~[y]. 

In what follows we shall only be discussing the Lie- 
0 i algebra case i.e. we take o)~t=0 in (35) and (36). 

Then the WI (42) acquires the form 

0 ~/~ ~. o c &P \ ' 6~ ( t )  +y j ( t )  (~)'~+to'~ f~k(t)  ) +R~(y)  

= 0 ,  (44) 

and can be rewritten as 
0 . .  

£ ~ ( y ) P + R ~ ( y )  +o9 'Jyj (t) = 0,  (45) 

where we introduced the following functional differ- 
ential operator: 

£~(y)_  [~} o.  
Ot + OajkYk(t) ] (46) 

5yj( t ) ' 

or, in terms of the group notation from ( 9 ) - (  15 ) 

T* L~(y)  =_ [ 0 , - a d * ( y ( g ) )  ] B y ( g ) '  (47) 

spanning the algebra 
0 . .  

[ /~(y) ,  £~, (y) ] = - o a ' ~ L ~ ( y ) O ( t - t ' ) .  (48) 

Using the algebra (48), the Wess-Zumino consis- 
tency condition [ 14] for (45) yields 

L~(y)R~r (y)  - L  Jr R ~(y ) + o2 '~Rkt (y )~(  t-- t' ) 

= 0 .  (49) 

~3 Note that both the arguments t as well as the continuous parts 
of  the indices kl,2 = (Xl,2; A 1,2) of  J ~ ( q ~ )  in (43) coincide 
since the infinite-dimensional matrix to ~,k2 is an operator ker- 
nel of  the form O(xi - x 2 )  and derivatives thereof. 

Eq. (49) shows that the "anomaly" R~(y) must be a 
cohomologically non-trivial solution of the latter [i.e. 
R~(y) cannot be represented in the form R ~ ( y ) =  
£ ~ ( y ) A ( y )  with an arbitrary functional A ( y ) ] .  One 
easily checks, using the Jacobi identities in (4), that 
a cohomologically non-trivial solution to (49) reads 

0 . ,  

R~(y) =roaUyj( t ) . (50) 

Furthermore, for the algebras satisfying condition 
dim H 2 (f¢) = 1, this solution is unique up to the nu- 
merical factor r to be determined from explicit cal- 
culations in each specific model. Substituting (50) 
into (44) we obtain the renormalized WI: 

~P { o.. oi. 8P "X 
Ot S~i(t) + yi( t )  ~ (1 +r)o)V+o)~ 5y---f~ ) 

= 0 .  (51) 

Let us now observe that eq. (51 ), the WI for the 
quantum effective action P (41 ), coincides exactly 
with the functional differential eq. (28) (with 
O ~l = 0) or, equivalently, eq. (32) for the Legendre- 
transformed group ~ co-orbit action Fo, where ~ is 
the Lie-group corresponding to the PB Lie-algebra 
of the Noether conserved currents (35). Thus, re- 
calling (29) -  ( 31 ) we get the following main result: 

P] y~- riy,=y~g-,) = - ( 1 + r) WG [g] • (52) 

In particular, when the classical Noether alg~)bra (35) 
ff appears without the cocycle term [i.e. o20=0 in 
(35 ), (44), (45), (51 ) ], but admits a central exten- 
sion, then the solution for the quantum effective 
action 

P] y~ r,y,=~(g-, ) = - rWo [g] (53) 

is entirely due to the "anomaly" R~(y) in the WI. 
Let us particularly stress, that the RHS of (52), 

(53) does not depend on the details of the classical 
action Wo [ @], but only depends on the structure of 
its Noether symmetry (34), (35). We have therefore 
shown, that if the underlying Noether symmetry al- 
gebra ff admits a central extension ~ and satisfies 
d i m H 2 ( f f ) =  1, then the central extension yields 
unique (up to a constant r) solution of the Ward 
identity for the quantum effective action which takes 
the form of the geometric coadjoint orbit action of 
the Noether symmetry group G calculated in terms 
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of the basic group theoretical objects within the sym- 
plectic approach [ 10-12 ]. 

4. Examples 

4.1. Ward identities in group co-orbit models 

Let ~/e = (9(Box) be a co-orbit of the infinite-dimen- 
sional group with central extension CJ, and 
W[ q~] = WG [g] be the corresponding co-orbit geo- 
metric action [cf. (29)] .  As a set of Noether con- 
served currents we choose T*J~(~)=S(g)  where 
27(g) is the same as in (9). As shown in refs. 
[ 11,12,15 ] Ot.S,(g) [ .... h~U = 0 and the PB algebra of 
S(g)  is (18). Then, our general result (52) tells us 
that: 

the indices i, j =  1, 2, and the central "charge" a i is a 
numerical two-vector.] The group elements of 
Diffo(T 2) are smooth diffeomorphisms on the torus 
M ~ F ~ = F i ( x  1, x 2) subject to the area-preserving 
constraint: 

~ij OiF k 0sFt= ~kl. (57) 

The second factor in the semidirect product (55) 
( ~ V )  denotes the Heisenberg-Weyl group with the 
Lie algebra 

[2~(x),  P:(Y) l = ~ '~  ~z~ ( x - y ) ,  (58) 

and group elements of the form 

exp ( f  d2x [ P , ( x ) f ( ' ( x ) + X , ( x ) P ' ( x ) ] ) ,  

f ~g, exp[ i (WG[g]+ f ( Z ( g , ) l Y ( g - l ) ) ) ]  

= e x p ( i { -  (1 + r )  WG [g]}) • (54) 

Thus eq. (54) provides the explicit solution of the 
Ward identities for the generating functional of all 
correlation functions of the form (,S,(g)...,S(g)) in 
any group coadjoint orbit model. 

In particular, let us recall that for Bo = 0 in the case 
of G - Kac-Moody group (i.e. WZNW models) 
Z(g) = O_gg-1, whereas in the case of G - Virasoro 
group [i.e. Polyakov D = 2  gravity] Z ( g ) = S ( F )  
where S(F)  is the schwarzian of the Virasoro group 
element g - F  [ a conformal diffeomorphism 2 + = 2  +, 
2 - = F ( x + , x - ) ] .  

4.2. Effective action of toroidal membrane 

Let us consider the following semidirect product of 
infinite-dimensional groups 

G= Diffo(T2)N (Yd~q/). (55) 

Here Diffo (T 2) denotes the group of area-preserving 
diffeomorphisms on torus with the Iliopoulos- 
Floratos central extension [ 16 ] whose Lie algebra 
reads: 

[£(x), £(y)]  = _¢s  O~£(x) Oj6 ~2> ( x - y )  

- a  ~ Oi6~2)(x-y) . (56) 

[ Here and in what follows x =  (x 1, x 2) ~ T2= S 1 × S 1, 

where I =  1, ..., N. 
Applying the general formalism of refs. [ 10,12 ] we 

get the following geometric action on the adjoint or- 
bit of G (55) [we take for simplicity the orbit with 
initial point (Bo, c) = (0, c); cf. (10), (15) ]: 

W~=WDiffo(T2)[F]+W[X,P;y(F-1)] , (59) 

WDiffo ( T2 ) [F] 

= - ~ j dt dZx (akck~F~)%F i O t F  j , (60) 

W[X, P; y ( F - l )  ] = ~ dt d2x [P '  OtX, 

- y( F - '  )~a OiX t OjPI] • (61) 

The first part (60) of the action (59) is the geomet- 
ric co-orbit action for the pure Diffo (T 2) obtained in 
ref. [ 15 ]. The second part (61 ) describes the "cou- 
pling" of the "matter" fields X I, pi  to the "gauge" 
field y ( F - l ) .  Y ( F ) = d t y ( F )  denotes the basic 
Maurer-Cartan one-form [cf. (12), (13)] for the 
group Diffo(T 2) (F  -1 indicating the inverse area- 
preserving diffeomorphism). The explicit form of 
Y(F) found in ref. [ 15] reads 

Y ( F) = ½¢oF i dFJ + dp( F) , (62) 

where the function p(F) is a solution of the consis- 
tent [due to (57) ] overdetermined system 

O i p ( F )  = --  ½ (EktF ~ O i F l +  ~.ijx j )  • ( 63 ) 

Let us now recall, that the classical action of the 
membrane in the light-cone gauge reads [ 17,4,16 ]: 
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Wmemb . . . .  = J dt  d 2 x  [pl OtXl 

- ( P , p ' +  ½{x,, xj}{x', xq)  -AEO O y  0~P,] 

=-W[X,P;A] 

- fd td2x(PipIq-½{XhXj}{Xt ,  XJ}) ,  (64)  

where the brackets {, } indicate two-dimensional  PBs: 
{X I, Xs}=EkIOkXIOIxJ. The act ion (64)  has pre- 

cisely the form of  a group co-orbit  act ion for (55)  
with vanishing I l iopoulos-Flora tos  central charge and 
with a non-zero hami l ton ian  [cf. eq. ( 1 9 ) ] ,  pro-  
v ided  the Lagrange mul t ip l ier  A for the first-class 
constraints  ~iJOiXlOjPi=O #4 is pa ramet r i zed  in 
terms o f  the group parameters  F o f  Diffo (T 2) as (cf. 
( 6 2 ) ) :  

A = y ( F  -~ ) 

=½~ij(F-')~ Ot(F- ' )J+O,p(F-~)  . (65)  

Now, let us consider  the quan tum effective act ion 
o f  the membrane :  

e x p  ( i/~memb . . . .  [ A ] )  

: f ~ X I ~ p ' e x p [ i ( f d t d 2 x [ P ' O , X ,  

- ( e , e ' +  ½{x, ,  x~}{x', xJ)) 

- A e °  OiX' OjPI])]. (66)  

Clearly, A plays the role o f  external  "source"  coupled 
to the conserved currents J( X, P) -- ~o O~X 1 Off'l, whose 
PB algebra exactly coincides with the Lie algebra (56) 
o f  Diffo(T z) (with zero central charge) .  Thus, apply-  
ing the general result eq. (53)  we find 

/~rnemb . . . .  [A=y(F --1) ] = - -  Wi)iffo(V2)[F]  . (67)  

The specific value o f  the induced central  charge a i 
in the anomalous  membrane  effective act ion (67)  
[see eq. (60)  ] has to be found from explicit  calcula- 
tions. The pr incipal  p rob lem in this context  is to f ind 
an appropr ia te  regular izat ion (e.g., it is not  clear so 

~4 Recall, that unlike the string, in the case of membranes the 
light-cone gauge only partially fixes the gauge symmetries 
leaving the group of area-preserving diffeomorphisms as a re- 
sidual gauge symmetry; see e.g. refs. [ 17,4,16]. 

far that the "discrete" SU (X)- regular iza t ion  [ 17,18 ] 
will work for this purpose) .  This  quest ion deserves a 
careful s tudy ~s 
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~5 In terms of usual massless scalar fields in D = 2 + 1 it is possi- 
ble to construct unitary, but not highest-weight, representa- 
tions of the area-preserving diffeomorphisms algebra (56) with 
a zero central charge [ 19 ]. For a recent progress in construct- 
ing unitary highest weight representations of infinite-dimen- 
sional algebras in D>~ 3, see ref. [20]. 
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